Richtung des $\mathrm{CaCu}_{2} \mathrm{O}_{3}$ entsprechen [010] und [001| der vorliegenden Verbindung. Die geraden CuO_{2}^{-} Ketten kommen in den bisher bekannten Oxocupraten der Erdalkalimetalle nicht vor, sie treten vielmehr in Alkalimetall-Oxocupraten $\mathrm{Li}_{2} \mathrm{CuO}_{2}$ (Hoppe \& Rieck, 1970), NaCuO_{2} (Hestermann \& Hoppe, 1969b) sowie $\mathrm{KCuO}_{2}, \mathrm{RbCuO}_{2}$ und CsCuO_{2} (Hestermann \& Hoppe, 1969a) auf. Die $\mathrm{Cu}^{\mathrm{III}}$-O-Abstände 1,85 und $1,84 \AA$ in NaCuO_{2} bzw. KCuO_{2} sind merklich kürzer als der $\mathrm{Cu}^{11}-\mathrm{O}-\mathrm{Abstand} 1,966 \AA$ in $\mathrm{Li}_{2} \mathrm{CuO}_{2}$. Der Unterschied zwischen $\mathrm{Cu}^{\text {I }} \mathrm{O}_{2}$ - und $\mathrm{Cu}^{\mathrm{II}} \mathrm{O}_{2}$-Ketten kommt auch in den durchschnittlichen Längen ihrer Kettenglieder deutlich zum Ausdruck. So liegen diese Längen zwischen 2,71 und $2,748 \AA$ für die $\mathrm{Cu}^{\text {"1 }} \mathrm{O}_{2}$-Ketten der ebengenannten Verbindungen, während die entsprechende Länge des $\mathrm{Li}_{2} \mathrm{CuO}_{2} 2,863 \AA$ ist. Werden diese Werte mit $2,755 \AA$ der vorliegenden CuO_{2}-Ketten verglichen, so erscheint die Annahme naheliegend, daß die dreiwertigen Cu -Atome überwiegend in diesen Ketten eingelagert sind.

Wir danken Herrn Dr M. Watanabe für Bereitstellung seines Einkristalldiffraktometers. Unser Dank gilt auch Frau Dr M. Onoda, die uns mit wichtiger Literatur bekannt machte.

Literatur

Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147, 148-153.
Becker, P. J. \& Coppens, P. (1975). Acta Cryst. A31, 417-425.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Bericht ORNL-TM-306. Oak Ridge National Laboratory, Oak Ridge, Tennessee, VStA.
Hestermann, K. \& Hoppe, R. (1969a). Z. Anorg. Allg. Chem. 367, 249-260.
Hestermann, K. \& Hoppe, R. (1969b). Z. Anorg. Allg. Chem. 367, 261-269.
Hoppe, R. \& Rieck, H. (1970). Z. Anorg. Allg. Chem. 379, 157-164.
International Tables for X-ray Crystallography (1974). Bd. IV. Birmingham: Kynoch Press. (Gegenwärtiger Verteiler Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Bericht ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, VStA.
Kato, K., Kawada, I. \& Takahashi, T. (1977). Acta Cryst. B33, 3437-3443.
Maeda, H., Tanaka, Y., Fukutomi, M. \& Asano, T. (1988). Jpn. J. Appl. Phys. 27, L209-L210.

Otero-Diaz, L., FitzGerald, J. D., Williams, T. B. \& Hyde, B. G. (1985). Acta Cryst. B41, 405-410.

Sakurai, T. (1967). Herausgeber. UNICSII. Universal Crystallographic Computation Program System. The Crystallographic Society of Japan, Tokyo, Japan.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Teske, C. \& Müller-Buschbaum, H. (1969). Z. Anorg. Allg. Chem. 370, 134-143.

Acta Cryst. (1988). C44, 1884-1887

$\mathbf{L a}_{\mathbf{3}}\left(\mathbf{S i O}_{4}\right)_{2} \mathbf{C l}$: a New Structural Type of Rare-Earth Chloroorthosilicate

By P. Gravereau, B. Es-Sakhi and C. Fouassier
Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 351 cours de la Libération, 33405 Talence CEDEX, France

(Received 18 April 1988; accepted 24 June 1988)

Abstract

Trilanthanum chloride bis(orthosilicate), M_{r} $=636.35$, monoclinic, $C 2 / c, a=14.512(2), b=$ 6.526 (1), $\quad c=8.844$ (2) $\AA, \quad \beta=98.35(1)^{\circ}, \quad V=$ 828.7 (3) $\AA^{3}, Z=4, D_{m}=5.01, D_{x}=5.10 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=15.9 \mathrm{~mm}^{-1}, \quad F(000)=$ 1120, $T=298 \mathrm{~K}, R=0.032$ for 1610 independent reflections with $I>3 \sigma(I)$. Isostructural compounds are $\mathrm{Ln}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$ with $\mathrm{Ln}=\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}$ and $\mathrm{Ln}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Br}$ with $\mathrm{Ln}=\mathrm{La}, \mathrm{Ce}$. The new chloroorthosilicate structural type shows some common features with that of $\mathrm{Yb}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$, previously determined, $(\mathrm{LnCl})_{n}$ planes alternating with two successive $\left|\operatorname{Ln}\left(\mathrm{SiO}_{4}\right)\right|_{n}$ planes, square coordination for Cl . The arrangements of cations and anions in the mixed planes differ, leading to higher coordination for the lanthanum ions.

Introduction. The structure of a rare-earth chlorosilicate, $\mathrm{Yb}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$, has been previously determined 0108-2701/88/111884-04\$03.00
(Ayasse \& Eick, 1973). Its symmetry is orthorhombic, the space group Pnma. Isostructural phases have been reported for Y and Gd; they show interesting luminescent properties when doped with Ce^{3+} (Yamada, Kano \& Tanabe, 1978). Investigation of the $\mathrm{Ln}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}-$ LnOCl systems (Ln : lanthanide) reveals the existence of a different structure type for the largest rare-earth ions: $\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}$. With Br a homologous phase was obtained only for $\mathrm{Ln}=\mathrm{La}, \mathrm{Ce}$. The present paper reports an X-ray structural study on a single crystal of $\mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$. The new crystal structure is compared with that of $\mathrm{Yb}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$.

Experimental. $\mathrm{Ln}_{3}\left(\mathrm{SiO}_{4}\right)_{2} X(\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, X=\mathrm{Cl}$; $\mathrm{La}, \mathrm{Ce}, X=\mathrm{Br}$) powder samples were prepared by solid-state reaction between silica, rare-earth oxide and oxyhalide. The technique is described below using $\mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$ as an example.
© 1988 International Union of Crystallography

Table 1. Positional parameters and isotropic thermal parameters and alternative solutions for Cl -atom parameters

$$
B_{\mathrm{cq}}=8 \pi^{2} / 3 \sum_{i=1}^{3} \sum_{j=1}^{3} a_{i}^{*} a_{j}^{*} U_{i j}\left(\mathbf{a}_{i} \cdot \mathbf{a}_{j}\right) \text { for } \mathrm{La}, \mathrm{Cl} \text { and } \mathrm{Si}
$$

	Position	Site symmetry		x	y		z	$B_{\text {eq }}$ or $B_{\text {iso }}\left(\AA^{2}\right)$		
$\mathrm{La}(1)$) $8(f)$	1		$0 \cdot 18452$ (2)	0.39635 (5) 0		$0 \cdot 16975$ (3)	0.47		
$\mathrm{La}(2)$) $4(e)$	2		$\frac{1}{2}$	0.4315 (1)		$\frac{1}{4}$	0.55		
Cl	4(e)	2		0	0.4731 (4)		$\frac{1}{4}$	2.56		
Si	8(f)	1 -		0.3417 (1)	0.4441 (3) 0		0.4736 (2)	0.46		
O(1)	$8(f)$	1		0.0785 (3)	0.1206 (7) 0.		0.0330 (5)	0.63 (6)		
O(2)	$8(f)$	1		0.2590 (3)	0.0542 (7) 0		0.0809 (5)	0.56 (6)		
$\mathrm{O}(3)$	$8(f)$	1		0.3551 (3)	0.2649 (8) 0		0.3539 (5)	0.84 (6)		
$\mathrm{O}(4)$	$8(\%)$	1		0.1546 (3)	$0 \cdot 1190$ (7) 0		0.3485 (5)	0.73 (6)		
				Site occupation			$U_{i j} \dagger\left(\AA^{2}\right.$	$\times 10^{4}$)		
	x	y	z	factor	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Case I:										
Cl site 4(e)	$0 \quad 0$	0.4731 (4)	$\frac{1}{4}$	1	194 (12) 1	140 (11)) 707 (23)	0	290 (14)	0
Case II:										
Cl site 8(f) 0	0.0060 (2) 0	0.4730 (4)	0.2720 (3)	$\frac{1}{2}$	108 (12) 1	145 (11)) 244 (22)	-8(11)	84 (14)	5 (14)

The starting materials were $\mathrm{La}_{2} \mathrm{O}_{3}$ (99.99%), LaOCl and SiO_{2} (precipitated from an $\mathrm{Na}_{2} \mathrm{SiO}_{3}$ solution) in the proportions 1:1:2+x.

They were ground in an agate mortar inside an argon dry box. The powders placed in a platinum tube sealed under argon atmosphere were heated at 1570 K for 5 h . With the stoichiometric proportions ($1: 1: 2$) the reaction is incomplete and leads predominantly to the formation of silicates $\left(\mathrm{La}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}, \mathrm{La}_{14 / 3} \mathrm{Si}_{3} \mathrm{O}_{13}\right.$ and $\mathrm{La}_{2} \mathrm{SiO}_{5}$). The latter are very inert towards LaOCl even at very high temperature ($\sim 1670 \mathrm{~K}$). An excess of silica (minimum $x=0.5$) prevents their formation:

$$
\mathrm{La}_{2} \mathrm{O}_{3}+\mathrm{LaOCl}+2.5 \mathrm{SiO}_{2} \rightarrow \mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}+0.5 \mathrm{SiO}_{2} \text { (amorphous). }
$$

The single crystal was obtained by heating a mixture containing an excess of LaOCl at 1670 K .

Measurement of the density of $\mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$ was carried out for two samples with different silica contents (100 and 50% in mol). The densities obtained (4.55 and $4.75 \mathrm{Mg} \mathrm{m}^{-3}$) were in agreement with those calculated (4.60 and $4.83 \mathrm{Mg} \mathrm{m}^{-3}$) using values of 2.30 and $5 \cdot 10 \mathrm{Mg} \mathrm{m}^{-3}$ for SiO_{2} and $\mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}(Z=4)$.

Translucent colourless single crystal with a parallelepipedic primitive shape $(50 \times 90 \times 140 \mu \mathrm{~m})$ and $\{111\}$ crystal-form truncations. Monoclinic symmetry determined with photographs (Laue, Weissenberg, precession). Cell parameters refined with 35 reflections from X-ray powder diffraction pattern (graphite-monochromated $\mathrm{Cu} K \alpha$ radiation and Si as internal standard).

Data collection with an Enraf-Nonius CAD-3 diffractometer: graphite-monochromated Mo $K \alpha$ radiation; ω scan; 7262 reflections; $(\sin \theta) / \lambda<0.81 \AA^{-1}$, $-23<h<23,0<k<10,-14<l<14$; scan width $(0.64+0.79 \tan \theta)^{\circ} ;$ counter slit width $(0.09+$ $0.22 \tan \theta) \mathrm{mm}$. Three standard reflections every 100 reflections, with no systematic variation observed and a
maximum relative deviation of 5%. Data corrected for Lorentz-polarization effects and for absorption using SHELX76 (Sheldrick, 1976), crystal shape and size, and incident- and diffracted-beam direction cosines ($0.225<T<0.485$). Equivalent reflections for which $I / \sigma(I)>3$ averaged to give 1626 unique reflections ($R_{\text {int }}=2.2$ and 1.9% before and after absorption correction).

Systematic absences $h+k=2 n+1$ for $h k l$ and $l=2 n+1$ for $h 0 l$ consistent with two possible space groups $C 2 / c$ and $C c$ [inconsistencies: 0 with $I / \sigma(I)>4$, 16 with $4>I / \sigma(I)>3]$. Atomic scattering factors for $\mathrm{La}^{3+}, \mathrm{Si}^{4+}, \mathrm{O}^{-}$and Cl^{-}and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974).

Structure solved in the $C 2 / c$ group by heavy-atom methods with SHELX76 and IBM 3090-400 computer of the Computing Center of Montpellier. Sites of La atoms found by Patterson-function deconvolution ($R=0 \cdot 20$), and Cl, Si and O atoms located with several difference Fourier syntheses. Calculations, with individual isotropic thermal parameters, a weighting scheme $w=1 / \sigma^{2}\left(F_{o}\right)$ and an empirical isotropic extinction parameter $x\left|F_{c}=F\left(1-10^{-4} x F^{2} / \sin \theta\right)\right|$, converging to $R=0.055, w R=0.074$. The structure refined to $R=0.032$ and $w R=0.050$ with anisotropic thermal factors for La, Cl and Si atoms: extinction parameter $x=7.2(6) \times 10^{-4}$; max. shift/e.s.d. in last cycle <0.002; residual electron density less than $3.8 \mathrm{e}^{\AA^{3}}$ near $\mathrm{La}(1)$ and $\mathrm{La}(2)$ atoms, and less than $1.5 \mathrm{e} \AA^{-3}$ near Cl, Si and O atoms.* Calculations with the

[^0]Table 2. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{La}(1)-\mathrm{O}(1)$	1×2.555 (4)	$\mathrm{Cl}-\mathrm{La}(1)$	2×2.911 (1)
-O(2)	1×2.649 (4)	$-\mathrm{La}\left(1^{v}\right)$	2×4.335 (2)
-O(2)	1×2.464 (4)	- $\mathrm{La}\left(2^{\text {i }}\right.$)	1×2.992 (3)
-O(2iv)	1×2.494 (4)	$-\mathrm{La}\left(2^{\text {iii) }}\right.$)	1×3.534 (3)
-O(3)	$1 \times 2.889(5)$		
-O(3i)	1×2.475 (5)	$\mathrm{Si}-\mathrm{O}\left(1^{\prime}\right)$	1×1.641 (5)
-O(4)	$1 \times 2.482(5)$	-O(2)	1×1.636 (5)
-O(4)	1×2.774 (5)	-O(3)	1×1.609 (5)
$-\mathrm{Cl}$	1×2.911 (1)	-O(4)	1×1.619 (5)
$\mathrm{La}(2)-\mathrm{O}\left(1^{1}\right)$	2×2.671 (5)	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Si}-\mathrm{O}\left(2^{\text {i }}\right.$)	106.6 (2)
-O(1i)	2×2.617 (4)	-O(3)	109.5 (2)
-O(3)	2×2.647 (5)	-O(4i)	106.8 (2)
-O(4)	2×2.593 (5)	$\mathrm{O}\left(2^{\mathrm{i}}\right)-\mathrm{Si}-\mathrm{O}(3)$	108.2 (2)
$-\mathrm{Cl}{ }^{\text {iii }}$	1×2.992 (3)	$-\mathrm{O}\left(4^{\text {vi }}\right)$	107.4 (2)
$-\mathrm{Cl}^{\text {i }}$	1×3.534 (3)	$\mathrm{O}(3)-\mathrm{Si}-\mathrm{O}\left(4^{\text {vi }}\right)$	117.7 (3)

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $\frac{1}{2}-x$, $y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $\frac{1}{2}-x, \frac{1}{2}-y,-z$; (v) $-x, 1-y,-z$; (vi) $\frac{1}{2}-x, \frac{1}{2}-y$, $1-z$.
non-centrosymmetric group $C c$ did not improve the model. Atomic parameters in $C 2 / c$ are given in Table 1.
The results show a strong thermal anisotropy for Cl atoms with largest mean square of the amplitude of vibration in the c^{*} direction ($U_{33} \simeq 0.071 \AA^{2}$). Another solution can be refined, considering slight delocalization along \mathbf{c} of Cl atoms beside the twofold axis, with a statistical distribution in an $8(f)$ site. Because of this, positional parameters and anisotropic thermal parameters have to be refined separately. Reliability coefficients so obtained ($R=0.033$ and $w R=0.050$) are close to those with Cl in $4(e)$. Results for both solutions are compared in Table 1. As the structural description is in good agreement with possible strong thermal vibrations of Cl atoms along c , it will be based on the model of case I. Selected bond lengths and angles are given in Table 2.

Discussion. La^{3+} cations and Cl^{-}or SiO_{4}^{4-} anions are equally distributed in planes parallel to $y z$ (Fig. 1). Double $\left[\mathrm{La}(1)\left(\mathrm{SiO}_{4}\right)\right]_{n}$ layers $\left(x \sim \frac{1}{6}, \frac{1}{3}\right.$ or $\frac{2}{3}$, $\frac{5}{6}$) alternate with $[\mathrm{La}(2) \mathrm{Cl}]_{n}$ layers $\left(x=0, \frac{1}{2}\right)$.

The $\mathrm{La}(1)$ and $\mathrm{La}(2)$ ions have $\mathrm{O}_{8} \mathrm{Cl}$ and $\mathrm{O}_{8} \mathrm{Cl}_{2}$ environments respectively. The anionic polyhedron around $\mathrm{La}(1)$ is irregular. The O atoms around $\mathrm{La}(2)$ form a distorted antiprism with the Cl atoms out of the distorted square faces. The site of $\mathrm{La}(2)$ can also be considered as a distorted octahedron consisting of four SiO_{4} groups and two Cl atoms.

Along the z direction the oxygen polyhedra around $\mathrm{La}(1)$ form chains with corner-sharing $\mathrm{O}(2)$ atoms. Each $\mathrm{La}(1) \mathrm{O}_{8}$ polyhedron is connected to three $\mathrm{La}(1)$ polyhedra of the neighbouring $\left[\mathrm{La}(1)\left(\mathrm{SiO}_{4}\right)\right]_{n}$ plane, two by face sharing $[\mathrm{O}(2) \mathrm{O}(3) \mathrm{O}(4)]$ and one by a common edge $[\mathrm{O}(2) \mathrm{O}(2)]$.

Along z, the $\mathrm{La}(2) \mathrm{O}_{8}$ polyhedra are linked by edge sharing $[\mathrm{O}(1) \mathrm{O}(1)]$. Each $\mathrm{La}(2) \mathrm{O}_{8}$ polyhedron is linked to four $\mathrm{La}(1) \mathrm{O}_{8}$ polyhedra of each $\left[\left.\mathrm{La}(1)\left(\mathrm{SiO}_{4}\right)\right|_{n}\right.$ double sheet, two by edge sharing $[\mathrm{O}(1) \mathrm{O}(4)$ and $\mathrm{O}(3) \mathrm{O}(4)]$ and two by a common apex $[\mathrm{O}(1)$ or $\mathrm{O}(3) \mid$.

The assembly of SiO_{4} groups and lanthanum polyhedra forms tunnels parallel to the z direction, which accommodate the Cl atoms (Fig. 2). The Cl atoms are coordinated to two $\mathrm{La}(1)$ and two $\mathrm{La}(2)$ atoms located at the corners of a distorted square, with $\mathrm{Cl}-\mathrm{La}$ distances between 2.911 and $3.534 \AA$. Two other $\mathrm{La}(1)$ atoms are situated at $4.335 \AA$, forming an

Fig. 1. Projection of the $\mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$ structure along the b axis (atoms with $\frac{1}{4}<y<\frac{5}{4}$ are represented). The tetrahedra represent the SiO_{4} groups, the small circles the La atoms, the larger ones the Cl atoms.

Fig. 2. Projection of the $\mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$ structure along the c axis (only half the La and Cl atoms are represented).
elongated octahedron with the four nearest-neighbouring La atoms. The accommodation of Cl atoms in tunnels running in the z direction explains the high value of the U_{33} anisotropic thermal parameter.

The close similarity of the powder patterns of the $\mathrm{Ln}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}(\mathrm{Ln}=\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd})$ and $\mathrm{Ln}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Br}$ ($\mathrm{Ln}=\mathrm{La}, \mathrm{Ce}$) phases shows that these halosilicates are isostructural with $\mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$. Their lattice constants will be published elsewhere, with those of other phases in the $\mathrm{Ln}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}-\mathrm{LnCl}_{3}$ systems. From samarium in the lanthanide series the chlorosilicates belong to the $\mathrm{Yb}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$ type.

The two structures have common features: (1) the existence of double layers $\left[\left.\operatorname{Ln}\left(\mathrm{SiO}_{4}\right)\right|_{n}\right.$ alternating with $(\mathrm{LnCl})_{n}$ layers; (2) the presence of tunnels accommodating the Cl atoms; (3) the square coordination of Cl .

However, the arrangement of ions in the $\left\langle\left.\mathrm{Ln}\left(\mathrm{SiO}_{4}\right)\right|_{n}\right.$ and $\left(\mathrm{LnCl}_{n}{ }_{n}\right.$ planes differs. A higher coordination for La^{3+} is obtained by the increasing number of SiO_{4} groups connected by edge sharing to the rare-earth coordination polyhedra: three for $\mathrm{La}(1)$ and four for $\mathrm{La}(2)$ compared with two for $\mathrm{Yb}(1)$ and $\mathrm{Yb}(2)$.

The SiO_{4} tetrahedra are more regular for the La chlorosilicate than for the Yb phase. The $\mathrm{Si}-\mathrm{O}$ bonds range from 1.61 to $1.64 \AA(\langle\mathrm{Si}-\mathrm{O}\rangle: 1.626 \AA)$ in the La phase and from 1.56 to $1.64 \AA(\langle\mathrm{Si}-\mathrm{O}\rangle: 1.605 \AA)$ in the Yb phase, and the $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles from 106.6 to $117.7^{\circ}\left(\langle\mathrm{O}-\mathrm{Si}-\mathrm{O}\rangle: 109.4^{\circ}\right.$) and from 101.1 to 118.3° ($\langle\mathrm{O}-\mathrm{Si}-\mathrm{O}\rangle: 109.4^{\circ}$), respectively. The four independent O atoms are bonded to one Si and three La atoms, resulting in close values of the electrostatic valence. That is not the case for the Yb phase, since the number of bonds with Yb is two for $\mathrm{O}(1)$ and $\mathrm{O}(2)$, three for $O(3)$ and $O(4)$. This results particularly in an increase of the $\mathrm{O}(1)-\mathrm{Si}-\mathrm{O}(2)$ angle and a decrease of the $\mathrm{O}(3)-\mathrm{Si}-\mathrm{O}(4)$ angle.

References

Ayasse, C. \& Eick, H. A. (1973). Inorg. Chem. 12, 1140-1143.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Yamada, h., Kano, T. \& Tanabe, M. (1978). Mater. Res. Bull. 13, 101-108.

Acta Cryst. (1988). C44, 1887-1889

Structure of Dilithium Dimagnesium Trisulfate

By Marcel Touboul* and Michel Quarton
Laboratoire de Cristallochimie du Solide, Université Pierre et Marie Curie, Tour 54, 4 place Jussieu, 75252 Paris CEDEX 05, France

Jan Lokaj
Department of A nalytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Janska 1, 81237 Bratislava, Czechoslovakia
and Viktor Kettmann
Department of Analytical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 81234 Bratislava, Czechoslovakia

(Received 18 May 1988; accepted 14 June 1988)

Abstract

Li}_{2} \mathrm{Mg}_{2}\left(\mathrm{SO}_{4}\right)_{3}, M_{r}=350 \cdot 69\), orthorhombic, Pbcn, $a=12.165$ (2), $b=8.538$ (1), $c=8.689$ (1) \AA, $V=902.5(4) \AA^{3}, \quad Z=4, \quad D_{m}=2 \cdot 50, \quad D_{x}=$ $2.581 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $0.32 \mathrm{~mm}^{-1}, F(000)=696, T=293 \mathrm{~K}$, final $R=0.026$ for 1494 reflections. The structure contains almost regular SO_{4} tetrahedra linked by Mg cations which

[^1]0108-2701/88/111887-03\$03.00
have distorted octahedral coordination; Li cations are in tetrahedral cavities. This compound, with the small Li cation, belongs to a new family of double sulfates which is structurally different from the langbeinite family stabilized by larger univalent cations.

Introduction. The high-temperature form (cubic) of the lithium sulfate $\mathrm{Li}_{2} \mathrm{SO}_{4}$ exhibits high ionic conductivity (Kvist \& Lunden, 1965; Benrath \& Drekopf, 1921) © 1988 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters for $\mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$ have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51191 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * To whom correspondence should be addressed.

